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ABSTRACT. We provide a theory for the analysis of multigrid algorithms for 
symmetric positive definite problems with nonnested spaces and noninherited 
quadratic forms. By this we mean that the form on the coarser grids need not be 
related to that on the finest, i.e., we do not stay within the standard variational 
setting. In this more general setting, we give new estimates corresponding to 
the i cycle, #' cycle and a i cycle algorithm with a variable number 
of smoothings on each level. In addition, our algorithms involve the use of 
nonsymmetric smoothers in a novel way. 

We apply this theory to various numerical approximations of second-order 
elliptic boundary value problems. In our first example, we consider certain fi- 
nite difference multigrid algorithms. In the second example, we consider a finite 
element multigrid algorithm with nested spaces, which however uses a prolon- 
gation operator that does not coincide with the natural subspace imbedding. 
The third example gives a multigrid algorithm derived from a loosely coupled 
sequence of approximation grids. Such a loosely coupled grid structure results 
from the most natural standard finite element application on a domain with 
curved boundary. The fourth example develops and analyzes a multigrid algo- 
rithm for a mixed finite element method using the so-called Raviart-Thomas 
elements. 

1. INTRODUCTION 

In recent years, multigrid methods have been used extensively as tools for 
obtaining approximations to the solutions of partial differential equations (see 
the references in [8, 16, 21]). In conjunction, there has been intensive research 
into the theoretical understanding of these methods (cf. [2, 3, 4, 5, 6, 16, 20, 
21, 22, 30] and others). In this paper, we shall extend the theory for symmetric 
problems so that it applies in a more general framework. 

The analysis of this paper can be broken down into two distinct parts. In 
the first part (??2, 3, and 4), we provide a general theoretical framework for 
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the analysis of multigrid algorithms for symmetric problems with nonnested 
subspaces. Our algorithms allow the use of nonsymmetric smoothers in a novel 
way. In the second part (??5-8), we use the general theory to provide iterative 
convergence estimates for a number of applications. The results obtained for 
these examples are new. 

One of the most powerful tools for the development of an iterative con- 
vergence analysis for multigrid algorithms involves the use of the variational 
multigrid framework (see, e.g., [3, 4, 5, 21] ). This is motivated from the study 
of the finite element multigrid technique, where the coarser multigrid spaces 
are nested and the discrete operators on the subspaces are given in terms of 
a form defined on a larger space (which contains all of the subspaces). As is 
well known, this analysis generalizes in a straightforward manner to the case of 
nonnested spaces under the constraint that the form on the coarser grid is equal 
to the form on the finer applied to the interpolated image (see (2.5), [13, 21, 
22]). 

This paper provides an analysis which allows the above-mentioned constraint 
to be violated. In ?3, we consider the case when the equality constraint is re- 
placed by a corresponding inequality (see (A.2)). With this weakened assump- 
tion, a "regularity and approximation" assumption (see (A.3)), and an appropri- 
ate smoother, we show that all of the results in [5] hold. This means that for the 
7"F cycle, the variable 7"F cycle and the > cycle algorithm, with any amount 
of smoothing, I - BjAj is a reducer. Here Bj is the corresponding multigrid 
operator (symmetric and positive definite) and Ai is the operator which we are 
trying to invert. 

In ?4, we consider the case when the inequality constraint (A.2) no longer 
holds. In this case, I - BjAj may no longer be a reducer. However, for the %/ 
and variable 7"F cycle algorithms, the operator Bj is still symmetric and positive 
definite and hence can be used as a preconditioner. Section 4 provides bounds 
on the spectrum of BjAj. We prove that for the variable % cycle algorithm 
with the additional regularity and approximation assumption, the system BjA1 
is uniformly well-conditioned (independent of the number of multigrid levels). 
Thus, we can construct rapidly converging iterative schemes for computing the 
action of Aj using Bj (corresponding to the variable % multigrid cycle) as 
a preconditioner. We next provide a result for the r cycle algorithm without 
assuming (A.2). In this case, I-BjAj is still a reducer (uniformly, independent 
of j) for the > cycle provided that m (the number of smoothing steps) is 
chosen sufficiently large. We finally provide a result for the 7 cycle algorithm 
which is valid if (A.2) holds, up to a perturbation. 

Earlier papers provided a technique for proving > cycle results without the 
variational framework under the assumption that the number of smoothings 
was sufficiently large [3, 16]. This approach was used extensively in [16] and, 
for example, [9, 32]. 

It is interesting to note that if (A.2) is not satisfied, the operator Bj corre- 
sponding to the r cycle algorithm with a fixed number of smoothings may 
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be indefinite and hence of little use in an iterative algorithm for computing the 
action of AJ . This is illustrated computationally in an example in ?9. This 
indicates that the variable 2 cycle algorithm is more robust than the ? cycle 
algorithm. 

We note that many of the results given in this paper (and also [2, 4, 5, 6, 20] 
in the variational case) provide multigrid analysis for any number of smoothings 
on the finest grid. Such results are important to the code developer in that they 
guarantee that algorithms will work with just one smoothing. Accordingly, it is 
not necessary to experiment with various amounts of smoothing and one need 
not be concerned that the number of smoothing iterations may become so large 
as to make the algorithm no longer practical. 

In the second part of the paper, we apply the earlier developed theory to a 
number of examples. The major part of the analysis necessary for the applica- 
tion of our theory involves the proof of the so-called "regularity and approxima- 
tion" property. Its proof generally uses the elliptic regularity of the underlying 
problem as well as the approximation properties of the numerical method. 

Sections 5 through 8 consider four different applications of the general the- 
ory. In ?5, we consider a finite difference example with a lower-order term 
discretized by the "lumped mass" approximation. Section 6 considers a finite 
element example with alternative prolongation operators. Section 7 studies a 
finite element example where the multigrid algorithm was derived with loosely 
coupled grids. This example can be used to develop and analyze multigrid al- 
gorithms for problems with curved boundaries. Section 8 considers a multigrid 
algorithm for a mixed finite element approximation using the "Raviart-Thomas" 
elements. In all of these applications, the equality constraint mentioned above 
does not hold and hence the usual "variational" theory does not apply. 

Unless otherwise stated, c, C, and M, with or without subscript will denote 
generic positive constants which may take on different values in different places. 
These constants will always be independent of mesh parameters and the number 
of levels in the multigrid algorithms. 

2. MULTIGRID ALGORITHMS 

In this section, we describe the symmetric multigrid algorithm in the general 
setting. We also derive a basic recursion relation which plays a major role in 
the analysis given in ?3. 

Let us assume that we are given a sequence of finite-dimensional vector spaces 

along with linear operators Ik: Zk I Ak for k = 1, 
...k,j. 

The opera- 
tors {Ik} will sometimes be called "prolongation" operators. In addition, we 
assume that we are given symmetric positive definite quadratic forms Ak (,' *) 
and (-, *)k defined on gk x Ak for k = 0, ... X j. The norm corresponding 
to (, *)k will be denoted by lIHlIk . Examples of families of spaces, operators, 
and forms will be given in later sections. 
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We shall develop multigrid algorithms for the solution of the problem: Given 
f E -/, find v E /f satisfying 

(2.1) Aj(v,O)=(f,O)j forallq$E /j. 

To define these algorithms, we first define auxiliary operators. For k = 0,..., 
j, define the operator Ak: k F k by 

(Ak?w, q)k = Ak(W, 0) for all 0 E Rk- 

The operator Ak is clearly symmetric (in both the Ak (., *) and (, )k inner 
products) and positive definite. Also define the operators Pk- 1Ik 

F k- 
and P k -1 k Rk-1 by 

Akl(Pklw, 0) = Ak(w, Ijk0) for all k E Rk-1 

and 
(P01w ')k1 = (W, 'kw)k for all 0 E Zk 

It is easy to see that IkPk 1 is a symmetric operator with respect to the Ak 

form. Note that, in general, neither P1k nor Pk is a projection. 
To define the smoothing process, we require linear operators Rk: Ik k 

for k = 1, ...j, . This operator may be symmetric or nonsymmetric with 
respect to the inner product (,' *)k. If Rk is nonsymmetric, then we define Rk 
to be its adjoint and set 

(l) Rk if l is odd, 

k tRk if 1 is even. 

The multigrid operator Bk: Zk F k is defined by induction and is given 
as follows. 

Multigrid Algorithm 
Set Bo = Ao . Assume that Bkl has been defined and define Bkg for 

g E -k as follows: 

(1) Set xo = 0 and qo = 0. 

(2) Define xl for 1=1, ... m(k) by 

(2.2) x =x +Rk (g-Akx )- 

(3) Define ym(k) =X m(k) + IkqP, where qi for i = 1, ... ,p is defined by 

(2.3) q qi= 1 + Bk 1 [Pk(g-AkXk) A 

(4) Define y1 for 1 = m(k) + 1, ... , 2m(k) by 

y=-1 +R(+m(k))(g-A-y ). 

(5) Set Bkg=y2m(k) 
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In this algorithm, m(k) is a positive integer which may vary from level to 
level and determines the number of smoothing iterations on that level. Because 
of this variable smoothing, the above algorithm is more general than that usually 
described [2, 3, 8, 16]. If Rk is symmetric and all of the m(k) are the same, 
then the algorithm is the usual symmetric multigrid cycling algorithm described 
in a notation which is convenient for our analysis. Note that Bk is clearly 
a linear operator for each k. In this algorithm, p is a positive integer. We 
shall study the cases p = 1 and p = 2, which correspond respectively to the 
symmetric 2 and 2 cycles of multigrid. 

In the above algorithm, we alternate between Rk and Rk in Step 2. In 
Step 4, we use the adjoints of the Step 2 smoothings applied in the reverse 
order. This results in a symmetric operator Bj. As far as we know, this form 
of the multigrid algorithm has not previously been suggested. The exact form 
of the above algorithm is motivated by the theory presented in later sections. 
Nonsymmetric smoothers were previously considered in [22, 23], but the theory 
there assumed a "variational" multigrid setup and full elliptic regularity. 

Set Kk = I - RkAk; then K; = I - RkAk is the adjoint with respect to 
Ak(, .). We now make the following basic assumption: 

(A. 1) The spectrum of K*Kk is in the interval [0, 1) . 

Remark 2.1. We note that the Richardson iteration is an example of a symmet- 
ric Rk satisfying (A.1). In addition, one sweep of the Gauss-Seidel iteration 
with any ordering is an example of a nonsymmetric iteration satisfying (A. 1). 

Set 
k(m) f (KKk )m/2 if m is even, 

k (KKk)(m )/2K if m is odd. 

Let I denote the identity operator. It is straightforward to check that 

(2.4) I - BkAk - (Kk ) [(I-IkPk_l) + Ik( - Bk-lAk-1)PPk-1mk 

cf. (2.7) of [5]. In (2.4), * denotes the adjoint with respect to the inner product 
Ak(., .) . 

Equation (2.4) gives a fundamental recurrence relation for the multigrid op- 
erator Bk . A straightforward argument using (2.4) and mathematical induction 
implies that I - BkAk is a symmetric operator on Ik (even when Rk is non- 
symmetric) with respect to the Ak form. This immediately implies that Bk is 
symmetric with respect to the ( *)k inner product. 

In the above framework, the multigrid spaces need not be related to each 
other. Note that in the so-called "variational" case studied in [2, 4, 5, 20], it is 
assumed that 

(2.5) Ak(IkU IkV)= Ak_l(U, v) for all u, v E ek-P1 

Hence, the forms on all of the coarser grids are defined in terms of, or inherited 
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from, the form on the finest. The purpose of this paper is to analyze more 
general multigrid algorithms not satisfying assumption (2.5). 

3. GENERAL MULTIGRID THEORY ASSUMING (A.2) 

We provide a general multigrid theory in this and the following section. In 
this section, we consider the case when (2.5) is replaced by the assumption that 
for k=l,... i,j 

(A.2) Ak(IkU, Iku) < Ak_l(U,u) foralluEAZk_1. 
The reason for such an assumption will become clear as the analysis develops. 
As illustrated in Theorem 1, this assumption along with (A.1) is sufficient to 
guarantee that I - BjAj is a reducer and that the linear multigrid algorithm 
converges. In ?4, we consider the case when (A.2) fails to hold. 

Remark 3. 1. Note that by definition, Pk_1 is the adjoint of Ik and hence (A.2) 
holds if and only if 

(3.1) Ak-l(Pk_lu,Pk_lu)<Ak(u,u) forallueZ.k 
Inequality (3.1 ) is also equivalent to the nonnegativity of the operator I - IkPk 1 
on .k. A straightforward argument using (2.4) and mathematical induction 
implies that I - BkAk is also nonnegative. If (A.2) does not hold, it is unlikely 
that I - BkAk is nonnegative. 

The goal of this section is to prove that I - BkAk is a reducer and to estimate 
its rate of reduction under the Assumption (A.2). It suffices to show that the 
inequality 

(3.2) IAk((I-BkAk)u u)I ? okAk(u, u) forall uEJTk 

holds for a constant 3k < 1 and estimate the dependence of 8k on k and 
additional assumptions. The above inequality implies that I - BkAk is a con- 
traction with contraction number Jk . Moreover, if (A.2) holds, then I - BkAk 
is nonnegative and (3.2) is the same as 

(3.3) Ak((I -BkAk)U, u) < JkAk(u, u) for all u E k 

The first theorem guarantees convergence of the multigrid algorithm under 
minimal assumptions. 

Theorem 1. Assume that (A. 1) and (A.2) hold. Then (3.2) holds for some dk < 1 . 

The proof of the above theorem will be given later in this section. We note 
that the hypotheses for the theorem are rather weak. The spaces Z,k need not 
be related except for the existence of the linear maps Ik . Moreover, the maps 
Ik need not be injective and the assumptions on Rk are minimal. Thus, the 
above theorem can be thought of as a result for "algebraic multigrid" since it 
requires none of the stronger "regularity and approximation" assumptions used 
in the convergence analysis for the partial differential equation approximation 
applications. 
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Moreover, the theorem can still be used to develop multigrid algorithms, even 
when the forms Ak on the spaces do not a priori satisfy (A.2). Note that (A.2) 
can be satisfied by simply scaling the forms, i.e., Ak(, *) +- akAk(., .). Clearly, 
there is no difficulty in applying the multigrid algorithm with the scaled forms. 
Theorem 1 then implies stability and convergence; however, this convergence 
may be unacceptably slow without further conditions being satisfied. Multigrid 
results without this scaling of forms (i.e., when (A.2) fails to hold) are given in 
?4. 

For stronger convergence estimates, we shall make additional a priori assump- 
tions. Let 0 < a < 1 . The first assumption is a "regularity and approximation" 
assumption of the form 

(A.3) 1Ak((I-IkPk1)u, u) < C2 ( U 
I) Ak(u, U)' for all u E k 

where A k is the largest eigenvalue of Ak. More precisely, we assume that (A.3) 
holds with Ca independent of k for k = 1, ... ,j. 

Let Rk w correspond to the Richardson smoothing iteration defined by Rk, 

= w%IA I and Kk = (I - Rk (Ak) be the corresponding reducer. We assume 
that there exists an w in (0, 2) not depending on k such that 

(A.4) Ak(KkU, KkU) < Ak(Kk u)U, Kk , u) for all u E ,k, 

i.e., the smoothing process converges as fast as Richardson's method for 
some wi. 

The above assumption was used by McCormick in [22, 23]. It is not difficult 
to show that (A.4) is equivalent to the existence of a positive constant CR not 
depending on k and satisfying 

(3W4) 
A 

CR(RnkUt 

U)k for all u E ek 
k 

where Rk = - K *Kk)Ak 1 . The inequality (3.4) is convenient for our analysis. 
We also note that (A. 1) immediately follows from (3.4) and hence (A.4) implies 
(A. 1). 

Remark 3.2. The Richardson method is a symmetric iteration satisfying (A.4) 
for w E (O, 2). In finite element and finite difference applications, under 
reasonable assumptions, one sweep of Gauss-Seidel iteration with any ordering 
gives rise to a nonsymmetric Rk which also satisfies (A.4). 

Remark 3.3. For the theory presented in [5], it was assumed that Kk was non- 
negative and that 

(3.5) ? <CR(RkU,U)k foralluE4k 
Ak 

was satisfied with the (assumed symmetric) operator Rk . It is easy to see that 
this implies (3.4) with the same constant CR. 
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We can now state and prove the theorem for estimating 6k in (3.2) for the 
symmetric %'F cycle. 

Theorem 2. Assume that (A.2-A.4) hold and define B1 with p = 1 and m(k) = 

m for all k. Then (3.2) holds with 

(3.6) k Mk kM k + m 

Remark 3.4. The convergence estimates in Theorem 2 and those to be stated 
later in this section have exactly the same form as the theorems in [5]. The 
interested reader is referred to [5] for various explicit expressions for M in 
terms of the constants ac, Co and CR . 

Proof of Theorem 2. We shall prove (3.3) by induction on k. For k = 0, there 
is nothing to prove. Assume that (3.3) holds for k - 1 . By (2.4), 

37) Ak (I- BkA)U I u) =A k( - 
Ikpk-lf I f)U,U 

+ Akl ((I-Bk-lAk-l)Pkk U Pk-U) 

where ui =K u. Applying the induction hypothesis and the definition of 

Pk- 1 gives 

(3.8) Ak((I-BkAk)u, u) <Ak((I-IkPkl)A, I)+ k-lAk(IkPk- l, a) 

(3)-( 1 k-I )Ak((I -IkPk- )U, I ) + lk-I Ak (U, a ) . 

Applying (A.3) and a generalized arithmetic-geometric mean inequality gives 

(3.9) Ak((I - IkPk-1)u, u) < Ca {kYk Ak +( a)yk k,u). 

Applying (3.4) gives 

(3.10) k ?k < CRAk((I-Kk)Kk U I U) 

where 

(3.11) KJ KkKk if m is even, 
k ) 

KkK if m is odd. 

The remainder of the proof of the theorem is exactly the same as the proof of 
Theorem 1 in [5]. o 

From the proof of Theorem 2, it is apparent that the framework for nonnested 
spaces and noninherited forms developed in ?2 fits into the machinery of [5]. 
The next two theorems follow in a similar manner. The first gives a result for 
the 2f cycle algorithm, while the second gives a result for the variable %'F cycle 
algorithm. 
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Theorem 3. Assume that (A.2-A.4) hold and define B1 with p = 2 and m(k) = 

m for all k. Then (3.2) holds with Jk 6 (independent of k) given by 

(3.12) M 

Theorem 4. Assume that (A.2-A.4) hold and define Bj with p = 1. Assume 
that m(k) satisfies 

(3.13) /Om(k) < m(k - 1) < film(k). 

Here, we assume that ft0 and ft1 are constants which are greater than one and 
independent of k. Then (3.2) holds with 

(3.14) k = M 

Remark 3.5. We have only provided results for the "symmetric" multigrid cy- 
cling schemes, i.e., those in which one smooths both before and after coarse 
grid correction. The above analysis seems to fail for the nonsymmetric multi- 
grid schemes (described in, for example, [5, 13, 22]) due to the fact that IkPk 1 

is no longer a projection and the product of the so-called slash cycles [22] is no 
longer the symmetric %'" cycle. 

Proof of Theorem 1. We now prove Theorem 1. Note that since Rk is positive 
definite and all spaces are finite-dimensional, (3.4) holds for some constant 
CR(j) which may depend on {Rk}, k = I, ... , j. Similarly, the definiteness 
of Ak implies that (A.3) holds for some constant C,(j) which may depend 
on {Ak}, {IIk}, and { (, *)k} . Theorems 2-4 still hold with some convergence 
parameter 3k < 1 depending on CR(j) and Ca(j) since, in this case, the 
constant M is not independent of k. This proves Theorem 1. o 

4. GENERAL MULTIGRID THEORY WITHOUT (A.2) 

In this section, we provide an analysis for the multigrid algorithm which 
allows (A.2) to be violated. In this case, I - BkAk may no longer be a re- 
ducer. Nevertheless, the operator B1 corresponding to the variable %'F and 
the %'F cycle multigrid algorithms is positive definite and hence can be used as 
a preconditioner in an iterative method for solving (2.1). The r cycle may, 
however, be indefinite without increasing the number of smoothings. We first 
give a theorem with minimal hypotheses, which guarantees that the operator 
Bk corresponding to the 2 or variable 7 cycle algorithm is symmetric and 
positive definite. We next consider additional hypotheses which are sufficient 
to guarantee iterative convergence rates for variable X, X, and r cycle 
multigrid algorithms. 

Theorem 5. Assume that (A. 1) holds and p = 1. Then BJ is a symmetric 
positive definite operator on /J . 
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Proof. As already observed in ?2, B1 is a symmetric operator with respect to 
the (' )k inner product. By (2.4), 

(B A U, A A _-m(k)) U 
(4.1) (BkAku AkU)k = Ak(( - Kk )U, u) 

A (B A _(m(k))_ k(m(k))U) + (Bk 1Ak 1 Pk-1 k ,A-p-A Uk 

for all u E Ik . Since the eigenvalues of Kk are in [0, 1), it follows that I - 

Km(k) is a positive definite operator. Thus, by (4.1) and induction, Bk is kk 
positive definite. This completes the proof of Theorem 5. El 

Remark 4.1. In general, the theorem does not hold for the > cycle multigrid 
algorithm. We give a computational example in ?9 where (A.2) is violated 
and the Bj corresponding to the > cycle multigrid algorithm with m = 1 
has negative eigenvalues. Thus, this > cycle algorithm cannot be used in a 
preconditioning strategy or to develop a reducer. Computational results given 
in ?9 for the same problem indicate that the corresponding variable 7 and 7 
cycle algorithms give rise to effective preconditioners and hence lead to rapidly 
converging iterative schemes. 

The above theorem can be thought of as a result for algebraic multigrid since 
the hypotheses are minimal. The theorem guarantees that corresponding precon- 
ditioned iterative algorithms (for example, preconditioned conjugate gradient) 
for the solution of (2.1) will be stable and convergent. The convergence rates 
of these algorithms may be unacceptably slow without further conditions being 
satisfied. 

In the remainder of this section, we shall make additional assumptions which 
will lead to theorems which guarantee that the iterative algorithms converge 
at more reasonable rates. For the 7 cycle algorithms, this involves deriving 
bounds on the largest and smallest eigenvalues of the operator BjAj. Equiva- 
lently, we shall provide positive constants qo and 7, which may depend on k 
and satisfy the inequalities 

(4.2) lloAk(u, u) < Ak(BkAku, u) < ?1Ak(u, u) for all u EzZk. 
Note that if (4.2) holds, then the preconditioned conjugate gradient method 
converges with an asymptotic reduction rate of 

1 - \1X/71 

1 + \X W/ 1i 

per iterative step. 
The next theorem provides estimates for qo and q, for the variable 7 cycle 

algorithm. 

Theorem 6. Assume that (A.3) and (A.4) hold and define Bj with p = 1. As- 
sume that {m(k)} satisfy (3.13). Then the constants o and 1 in (4.2) satisfy 

i.e., the system BJA1J is well-conditioned independently of j . 
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We shall use the following lemma in the proof of Theorem 6. 

Lemma 4.1. Assume that p = 1 and that 3i for i = 1, 2, ..., k satisfies the 
inequality 

(4.3) -Aj((I - IPj_1 )i, ui) < 3jAj(u, u) for all u Ei 

where a = k(m(i))u. Then 
k 

61 '(+ i). 
i=l 

Proof. It suffices to show that 

(4.4) -Ak((I BkAk)u, u) < (zk- l)Ak(U, U) for all u E/Ik 

where lo = 1 and Tk = H> (1 + 3i) . We prove (4.4) by induction. For k = 0, 
there is nothing to prove. Assume (4.4) holds for k - 1. Then by (2.4), the 
induction assumption and (4.3), 

-Ak((I--BkAk)U, U) 

= 
-Ak((1 'kPk 1)i , i) -Ak ((I -Bk-lAk-I)Pk lU Pk-lu) 

<-Ak((I - IkPk-1)U i U) + (Tk-1 - l)Ak-I (Pk- 1a Pk-u) 

? [6k + (Tk- I 1)(1 + ck)]Ak(u, u) = (Tk - l)Ak(U, U). 

This completes the proof of the lemma. o 

Proof of Theorem 6. We note that Assumption (A.2) was used in the proof of 
Theorem 4 only to reduce to the proof of inequality (3.3). The subsequent 
arguments showing (3.3) remain valid without (A.2) and lead to the inequality 

Ak((I -BkAk)U aU) <?ckAk(U, U) foralluEZk X 

where 3k is given by (3.14). It immediately follows that (4.2) holds with o = 

1- k . 
To estimate , , we note that by (A.3), 

(4.5) -Ak((I-IkPkl), U) 2 C 1() A ' |AkU|K) Ak(A , j)la 

By (3.10) and [5, (3.16)], 

IIAkIlk C Km(k) (4.6) 
Ak < k < Ak((I-Kk )u, U). 

Since the eigenvalues of Kk are in the interval [0, 1), 

(4.7) -A k - IkPk_lu u) < Cm(k) aAk (U u). 

Elementary arguments imply that 

k(1 + ( < I + m 
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and hence the bound for q, follows from Lemma 4.1. This completes the proof 
of Theorem 6. El 

We next give a theorem for the > cycle algorithm. 

Theorem 7. Assume that all the hypotheses except (A.2) hold for Theorem 3. 
Then, for the 1' cycle algorithm with m sufficiently large, (3.2) holds with 
6k = 3 where 3 is given by (3.12). Furthermore, the same conclusion holds if 
"m sufficiently large" is replaced by the assumption 
(A. 5) Ak (Iku, Iku) < 2Ak-l (u , u) for all u Ez k 1. 

Proof. We first consider the case without Assumption (A.5). We first show that 

(4.8) -Ak((I - BkAk)u, u) < 6Ak(u, u) for all u E Ik. 

By (2.4), it clearly suffices to show that 

(4.9) -Ak((I-IkPkl-)I, A) < 6Ak(u, u) 

where aKk(m)u. k 
Inequality (4.9) immediately follows from (4.7) if m and M are chosen 

sufficiently large. With (4.8) verified, the proof of the opposite inequality, 

Ak((I - BkAk)U, u) < 6Ak(U, U) 

follows in the same way as Theorem 3. This completes the proof of Theorem 
7 without the assumption of (A.5). 

If (A.5) holds, then 

-Ak((I-IkPkl)a, a) < Ak(a, a) 

Hence, 

(4.10) -Ak((I-IkPk-1)", u) < (1 _ 
)|Ak(J -IkPk-1)u, u), + 62 Ak(a, a). 

We note that the first step in the analysis of the > cycle algorithm in Theo- 
rem 3 (see [5, (3.32)]) is to show that the right-hand side of (4.10) bounds 
Ak((I - BkAk)u, u). The remainder of the proof of Theorem 3 bounds the 
right-hand side of (4.10) by 6Ak(u, u) (see the proof of Theorem 3 of [5]). 
This completes the proof of Theorem 7. u 

Remark 4.2. It is elementary but tedious to see from the proof of Theorem 7 
(and in particular, the proof of Theorem 3 of [5]) that the constant 2 in (A.5) 
can always be replaced by 2 + c, where the size of e depends upon the size of 
CR and C.. Larger CR and Ca require smaller e. 

The last theorem of this section provides a result for the %'" cycle algorithm. 
For this result, we assume that 

(A.6) Ak(Iku,Iku) (1 +c)lj7)Akl(u, u) for all uz k_ 

which holds for some y in the interval (0, 1]. In many applications, Ak grows 
like hJ 2, where hk is the mesh size. Thus, (A.6) is a perturbation of (A.2) 
up to some power of hk. We have the following theorem for the %" cycle 
algorithm. 
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Theorem 8. Assume that (A.3), (A.4) and (A.6) hold, and define Bj with p = 1 

and m(k) = m. Assumefurther that the maximum eigenvalue >k > Kk for some 
K > 1. Then 7, in (4.2) can be chosen independently of k and 7o < 1 -k 
where 3k is given by (3.6). 

Proof. Since Ik and Pk-, are adjoint operators, (A.6) implies that 

-Ak((I -Ik"k )U ) < ckAk(A, iu) < c)kAk(u, u). 

Elementary manipulations imply 
00 

fl(1+C),-)-1 <cXo. 

k=1 

Lemma 4.1 shows that qi can be bounded independently of k. The bound for 

qo follows from the proof of Theorem 2 (see also the proof of Theorem 6). 0 

Remark 4.3. We note that if (A.6) is satisfied, the results of Theorem 7 still hold 
if the the assumption " m is sufficiently large" is replaced by the assumption 
"the coarse grid is sufficiently fine". 

5. A FINITE DIFFERENCE APPLICATION 

In this section, we consider a finite difference application approximating the 
solution of the problem 

(5.1) -Au+u=f inQ, 
u = 0 on OQ. 

Here, we do not assume that Q is a rectangle, and hence standard multigrid 
analysis for square or periodic domains does not apply. We define a multigrid 
algorithm in terms of the general approach of ?2. In this as well as the remain- 
ing sections, we shall consider only simple model problems, even though the 
techniques obviously extend to more general applications. 

We set up a sequence of nodes in the usual way. Without loss of generality, 
we assume that the domain Q C [0, 1]2 and hk = 2-k/M for some integer 
M > 1. Let Nk = 2k M - 1 . The nodes of the finite difference approximation 
on the kth level are given by 

Xij = (ihk, i hk) for i, i = 1,.., Nk. 

We assume that the boundary of the domain Q aligns with the mesh lines on 
the coarsest grid, i.e., Q is the union of coarse grid rectangles. Let Qk denote 
the nodes of the kth grid which are in the interior of Q. The space 1k iS 

defined to be the vector space of nodal values defined on ik . The prolongation 
operator Ik is defined as follows: 

(1) If x)j is a node on the (k - I)st grid, then (IkV)(xj) = V(xj)). 
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FIGURE 5.1 
The triangular mesh 

k 
(2) If xii is a node on an edge in the x or y direction between two nodes 

in the (k - I)st grid, then (Ik V) (x j) is the average of the nodal values 
of V at the two nodes. 

(3) Otherwise, (Ik V)(xij) is the average of the nodal value of the node 
immediately above and to the right with that of the node immediately 
below and to the left. 

The operator Ik corresponds to piecewise linear interpolation on the triangu- 
lation of size hk l in Figure 5.1. For a function V E Ak, Vij will denote the 

value of V at x1j . The quadratic forms Ak(, *) and (. ,)k are defined by 

Ak(U, V)= E [h2Uij + 4Uij -Ui+l j 
(5.2) xkEQk 

u-UI_ J 
- ui,j+1 u i, j-l] j 

and 

(5.3) (U, V)k k UliJViJ 

In (5.2) and the remainder of this section, nodal values are set to zero when 
the node is not inside of Q. It is obvious that, with the above definitions, the 
solution of (2.1) corresponds to the standard finite difference approximation to 
the solution of (5.1). In fact, the problems on the coarser grids are also standard 
finite difference approximations. Because of the way the lower-order term of 
(5.1) is approximated, (2.5) does not hold and the "variational" theory does not 
apply. 

To prove regularity and approximation for this and the remaining applica- 
tions in this paper, we shall need to use various Sobolev spaces. For nonnegative 
integers m, the Sobolev space Hm (Q) is defined to be the set of functions in 
L 2(Q) whose distributional derivatives up to order m are in L 2(Q) (see, e.g., 
[19, 25]). For a e (0, 1), the space Ha (Q) is defined to be the set of functions 
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in L 2(Q) for which the norm 

11V112 _ (V (X) _V (y))2 x ff ((x)- vC))2dx dy 

is finite. For s E (mi, mi + 1) and m an integer greater than zero, we define 
Hs(K2) to be the set of functions in Hm(?) for which the norm 

l ll2H-( lv2 inf(Q) + 
E ||D U | |nHs 

Ikl=m 

is finite. It can be shown that these spaces coincide with those defined by Hilbert 
scale interpolation between L 2(Q) and Hm +(Q) (with equivalent norms) pro- 
vided that there exists an extension operator which is simultaneously bounded 
from L 2(Q) -* L2(R2) and Hm+ (Q) i-. Hm+ (R 2) (cf. [18, Theorem 9.3]). 
The existence of such operators is known in the case of domains with minimally 
smooth boundary [28] which includes the case of plane polygons. 

For a nodal function V E Zk, let V denote the piecewise linear function 
on the triangulation depicted by Figure 5.1 which interpolates V at the nodes 
of 4k . It can be shown that 

(5.4) l(W, V) - (W, V)kl < chkll WIIH(Q) IlVilk for all V, W E 1k 

Here, (, *) denotes the L2 inner product on Q2 and IIIk = (., /2. 
Regularity resuilts for problem (5.1) have been proven in [17]. The space 

H I(Q) is defined as the set of distributions on Q for which the norm 

1If1IH-'(Q)= SUP (Q) 0) 

is finite. For s E (O, 1), the spaces Hs ((Q) are defined by interpolation be- 
tween L 2(Q) and H '(Q) with norms denoted by IHIIH-S(Q). In [17], it is 
shown that the solution u of (5.1) satisfies inequalities of the form 

(5.5) lIUlIHI+fl(Q) < C llfIKH-'+0(Q) ' 

where 0 < < 1 is a constant which depends upon OQ. In particular, a result 
of [17] shows that (5.5) holds for some /B > 1/2 for any polygonal domain in 
R with interior angles less than 2r . 

For our purposes, we shall need an alternative representation of the negative 
Sobolev norms defined above. Consider the problem: Given g E L (K2), find 
w E Ho (Q) satisfying 

D(w, X) =(g, X) forallXEHoI(K), 

where D(., -) denotes the Dirichlet form on Q. By Rellich's Lemma [25], 
1 2 H0 (Q) is compactly contained in L (Q). It follows that the solution operator 

T: L 2(Q) Ho (Q) defined by T(g) = w has a complete orthornormal basis 
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of eigenfunctions { 'i} [27]. The eigenvalues of T corresponding to these 
eigenfunctions will be denoted {ai}l. We define the spaces 

HS = { = cii such that >ZE Sc2 < oo} 

with norm 

(5.6) = ( -s c2)1/2 

It is not difficult to show that HI = Ho1 (Q) with equivalent norms. By duality 
and interpolation, it immediately follows that H s = H s(Q) for s E [0, 1]. 
Thus inequality (5.5) can be rewritten 

(5.7) IIUIIHI+#(Q) < Clllflllj +9 
We can now prove the following proposition. 

Proposition 5.1. Let ,k, Ak(., *)I (- *)k, and Ik be defined as above. Then 
(A.2) holds and (A.3) holds for a = fl/2. 

Combining the proposition with Theorems 2-4 gives results for the corre- 
sponding multigrid algorithms (with appropriately chosen Rk ). Note that we 
get uniform (independent of hj ) convergence for the Wf cycle and variable %7 

cycle algorithms. With the %'" cycle, we may see some logarithmic (j ln hi) 
deterioration even in the case of full elliptic regularity (,f = 1). 

Proof of Proposition 5.1. We first prove (A.2). We write Ak(.,) = ( .)k + 

Dk(., *). It is not difficult to see that 

(5.8) Dk(V, W)=D(V, W) forall V, WE.k. 

This uses the assumption that O92 aligns with the mesh lines of the coarsest 
grid. Consequently, to prove (A.2), it suffices to show that 

(5.9) (IkV, IkV)k < (V, V)k-l for all V E Rk- 1 

Note that the form (' )k can also be written 

(W I W)k =kh/6ZZW(y11)2, 
T1 j=1 

where the first sum is taken over the triangles of the kth mesh and {Yij= I 
denotes the three vertices of the ith triangle. It clearly suffices to prove the 
inequality analogous to (5.9) on a typical triangle of the (k - I)st grid. Note 
that Ik V = V on the nodes of the kth mesh and V is piecewise linear on each 
triangle of the (k - 1)st mesh. Consider a triangle of the (k - 1)st grid and a 
linear function which takes on the values a, b, and c at the nodes. Computing 
the local contributions to (Ik V Ik V)k and (V, V)k-l corresponding to this 
triangle, we see that (5.9) follows from 

a + b + c + 3(a + b) /4 + 3(b + c) /4 + 3(a + c) /4 < 4(a + b + c2). 
This completes the proof of (A.2). 
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We first introduce some additional notation for the proof of (A.3). Let A be 

the form on Ho (Q) x Ho (Q) defined by 

A(w, v) = (w, v) + D(w, v). 

In addition, let Sk c Ho (Q) denote the collection of piecewise linear functions 
on the triangulation of size hk (see Figure 5.1). Let Pk denote the elliptic 

projection onto Sk with respect to A(., .), i.e., Pkw for w E Ho(i) is the 
unique function in Sk satisfying 

A(Pkw, V) = A(w, v) for all v E Sk. 

From the definitions and (5.8), we have for W E Ak and ( E 1k-1 

'A(Pk - IW -)k - IWI (Pk-IWI ')-(Pk-IWI ()k-l+(WI Ikq))k-w ( >). 

Here we used the identity II= D. Thus, by (3.1) and (5.4), 

~~~~ _ - - .1- 2 
(5.10) A(Pk_l W PklW, pklW-Pk_ W) < ch Ak(W, W). 

To complete the proof of (A.3), we shall need the following lemma. Its proof 
is the same -as that given for the finite element case in [3]. 

Lemma 5.1. Let 0 < s < 1. There are constants co and cl which are indepen- 
dent of j such that 

(5.11) cOIkA ' 
Vllk < 

11VIIHs(fl) 

< C,llAk 1|| for all V E .k k O, **, j. 

Continuing with the proof of Proposition 5.1, we have by Lemma 5.1, 

(5.12) Ak(( - IkPk_1)W, W) < CIlAk Wilk WIkIW - Pk- lIWllH'1f(Q). 

Now 

II W-Pk1 WHIII fl(() ? 11W - Pk-1 WIHIf-4(Q) + llpk-l W - Pk-I WIIHI(!Q) 

By finite element duality [1] (see also (6.12) and the following estimates; this 
makes use of the assumption (5.7)) we have that 

||- Pk- iWIIH1 0i(Q) < chk 11 WIIH1(Q), 

and combining with (5. 10) gives 

(5.13) ~kl ch'A WW)11 (5.13) ||W Pk-IW||H,-f(Q) < k k (W, 

Clearly, 

(5.14) IAk 
(I P)/ < IIA WII'A(W W)( ) 

Combining (5.10), (5.12), (5.13), and (5.14) proves (A.3) for a = ,B/2 and 
hence completes the proof of the proposition. o 
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Remark 5.1. One obvious application of the results of this section is to the case 
when Q is an L-shaped domain. As far as we know, this is the first proof which 
guarantees convergence for a multigrid algorithm for this five-point operator on 
this domain with linear interpolation as a prolongation operalor. 

Remark 5.2. It is possible to analyze the analogous multigrid algorithm in the 
case when the lower-order term in (5.1) has variable coefficients. In that case, 
it will be unlikely that (A.2) holds, and hence one should use the theory of ?4. 

6. FINITE ELEMENT EXAMPLES WITH ALTERNATIVE PROLONGATIONS 

In this section, we consider two finite element examples with nested spaces 
where the prolongation operator does not correspond to the natural imbedding 
of the coarser space into the finer. An immediate consequence of the use of 
these prolongation operators is that (2.5) no longer holds, and hence the vari- 
ational theory does not apply. The first example leads to an algorithm which 
is equivalent to a rather reasonable finite difference multigrid application [8], 
and our theory provides new estimates for its convergence. The second example 
provides an instance when (A.2) is violated, in fact, (A.5) is sharp as k -* xc 
(see Remark 6.1). 

We consider the simplest of all finite element applications. We start with a 
domain Q which is a union of rectangles and consider the problem 

-Au=f inQ, 

(6.1) u= nQ u = 0 on 00. 

We shall provide two different finite element subspaces for this problem. 
In the first case, we define a coarse grid triangulation by dividing each rect- 

angle into two triangles, using one of the diagonals of the rectangle. Finer grids 
are defined by successively dividing each triangle into four by connecting the 
midpoints of the edges of the triangle (see Figure 6.1). The finite element sub- 
space Ak is defined to be the space of continuous piecewise linear functions 
on the kth grid which vanish on OQ. 

In the second case, we consider the corresponding sequence of rectangular 
grids, i.e., the original collection of rectangles is successively refined by dividing 
each rectangle into four subrectangles in the obvious way. The finite element 
subspace Ak is defined to be the space of continuous piecewise bilinear func- 
tions on the kth rectangular grid which vanish on 0Q. 

The Galerkin approximation to the solution u of (6.1) is, of course, defined 
as the function u E X) (resp. .) satisfying 

D(uj, x) = (f, x) for all x E cz (resp. X9j). 

We define Ak(,. )=D(-,*) and 

(6.2) (u, v)k = h 
2 

U(Xk)V(Xkj). 
iJ 
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The sum k 

C LLL LS Z gZ Z Z1Z ZIZ VVVI 

FIGURE 6. 1 
The grids for X0 and 

The sum in (6.2) is taken over the nodal points x k of the kth mesh, and 

hk = 2- kho, where ho corresponds to the size of the rectangles of the coarsest 
mesh. 

Note that we get the standard variational finite element multigrid algorithms 
if we define Ik to be the imbedding of 9k -I into k (resp. 1/? into k) 

Instead, in the first case, for u e k1 , we define the values of Iku at the nodes 
of k by first interpolating u into -k- and subsequently interpolating the 
result into 4k. Note that the natural imbedding uses linear interpolation on 
the (k - 1)st triangulation and differs from Ik only in that it assigns (b + c)/2 
to the center node in Figure 6.2 instead of (a + b + c + d)/4. Analogously, 
in the second case, we define Iku at the nodes of ek by interpolation into 
the subspace gk-l followed by interpolation into 4k. Thus at the fine grid 
nodes, the interpolation operator for the first problem corresponds to the natural 
imbedding for the second, and vice versa. 

The multigrid algorithm in the first case can be thought of as a finite differ- 
ence multigrid application. Indeed, the stiffness matrix is the standard five-point 
difference stencil. Moreover, from the finite difference point of view, the pro- 
longation Ik is as reasonable as any other [8]. 

We can now give the following proposition. 

a+b 
a 2 b 

'- 
a+b-+b -c+d 

a+c " b+d + 

C c+d d 

FIGURE 6.2 
Nodal values for the Ik interpolation 
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Proposition 6.1. Let /K Ak(., ) (-' and Ik be defined as above and 
assume that (5.7) holds for the solution u of (6. 1). Then (A.2) holds, and (A.3) 
holds for a < ,B/2. If ek and Ik are replaced by -k and 'k, then (A.2) may 
no longer hold but (A.3) still holds with a < ,B/2. 

Combining the proposition with Theorems 2-4 gives results for the corre- 
sponding multigrid algorithms using ek and Ik and an appropriate smoothing 
process. Note that we get uniform (independent of hj ) convergence for the 
r cycle and variable 7/ cycle algorithms. With the %'F cycle, we may see 
deterioration in the convergence rate like 1 - c/ ln(h7 1) even in the case of full 
elliptic regularity (fi = 1). 

In the case of Ak and Ik, (A.2) will not hold in general. Hence, the multigrid 
operator I - BkAk need not be a reducer. In contrast, the %'F cycle multigrid 
strategies employing the multigrid operator as a preconditioner will always be 
stable and convergent. 

Proof of Proposition 6.1. We first prove (A.2) in the case of Ak, Ik, i.e., 

(6.3) D(IkW, IkW) < D(W, W) for all W E 1k_1 

It clearly suffices to prove the corresponding local inequality 

(6.4) DR(IkW,IkW)<DR(W, W) for all We1,k_ 

where the Dirichlet form is over the domain R and R is a typical rectangle of 
the (k - 1)st grid. Let R be the rectangle pictured in Figure 6.2 and assume 
that W takes on the values indicated on the corners of the rectangle. Then 
(6.4) is equivalent to ( r = hky/hkx) 

I[(a + b - c - d)2/r + r(b + d - c - a)2] 

(6.5) + [r(a - b)2 + r(c - d)2 + (d - b)2/r + (c - a)2/r] 

< 1 [r(a - )2 + r(c 2 d)2+ (d - b)2Ir + (c - a)21r] 

Inequality (6.5) clearly holds and hence (A.2) follows. 
We next prove (A.3) in the case of Ak, Ik . Lemma 5.1 with v replacing V 

and V in (5.11) and Ak(, *) as defined above was proved in [3]. Consequently, 

(6.6) Ak((I - IkPk_l )w, W) < k WA|wk1 |(I- IkPk1 )w11H'-fl(Q) 

holds for all w E lk . Let Pk denote the elliptic projection onto Ak, i.e., 

D(Pkv,q$)=D(v,Oq) forallq$E /k. 

By standard finite element techniques (the duality argument) [1, 12], 

(6.7) 11 (I- I)< h (6. 7) ||(I -Pk_ l 
)WIIHH-fl(Q) Chk IIW HI(Q). 

Here we have used hypothesis (5.7). 
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Let Ik denote the standard interpolation operator onto the subspace k. 
Applying the Bramble-Hilbert Lemma directly in the fractional-order spaces and 
[14], noting that on each rectangle of the (k - 1)st grid, Ik'k 1 - I annihilates 
linear functions, we conclude that 

(6.8) I|(Ik'k-, -I)VIIH-fl4() 
? chk IIVIIHI+?(Q)' 

and 

(6.9) II(7k - I)VIIHI-f() < ck 11IVIIHI?3(Q) 

holds for 0 < fi < 1 and 0 < ( < 1 . We note that by the inverse property 

(6. 10) |V|H+()< ch -61 IIH () 
(6.8) and (6.9) hold for ( = 0 when v E Ak-_ . The inequality (6.10) will be 
proved in the appendix. 

By the triangle inequality, 

1( - IkPk-1 )WIIHI-A(Qi) < 11 ( Pk- )WIIHI-A(Q) + 1(1 - IkIk-1)Pk-1WIIHIfl(Q) 

+ Il(pk-1 Pk-I)WIIHI-f(Q)- 

By (6.6), (6.7), (6.8) and (3.1), (A.3) will follow if we can show 

(6.11) ||I(pk-- Pk-1)WIIH fl(Q) ? chk IIWIIH'(Q). 
We use a duality argument to derive (6.1 1). Since H1 = Ho (2) is contained 

in H' (a), by interpolation 

Il(pk- - Pk-1)WIIH'-f(K2) < Clll(Pk 1- Pk-)WIII 1-A 

(6.12) - C sup ((uk-, Pkl)w, T(4 I'20) 
OECO (QI) kkIIL2(Q) 

The power of T is, of course, defined in terms of its eigenfunction expansion 
and the equality above is an immediate consequence of the definition of the 
norm in (5.6). Let ' solve 

-AC = T(-1)/2 in n, 
4 = 0 on 9Q. 

Then 

(6.13) ((Pk- I Pkl )w, T_ k W) = D((Pk, -Pk l)w I C C) 

+ D(w, (Ik - I )lk_C). 

By (6.9) and (3.1), the first term in (6.13) can be bounded in absolute value by 

D((Pk-1 Pk-),W C -k- C) < Chk ||IIWIIH (Q)IICIIH?+f(Q). 
For the second term, 

II( IIk- WkC1CIlH(Q) < 1(Iklk-1 - I)CIIH'(Q) + (I - Ik-1)CIIH'(Q)) 



22 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU 

Applying (6.8) and (6.9) shows that the second term in (6.13) can be bounded 
similarly. Thus, by (5.7) we have 

- Pk-)W, TW -) k chIIW IIHI (Q) II CHHI+fl(Q) 

? chIIIIL2(Q) 1W1HI(Q) 

Combining the above inequalities proves (6.1 1) and hence completes the proof 
of the proposition in the case of Ak, Ik . 

The proof in the case Ik and Ik is similar except that we use the inequality 
corresponding to (6.8) to deduce the boundedness of -c_I in H1(Q). This 
completes the proof of Proposition 6.1. o 

Remark 6.1. In general, (A.2) does not hold in the second case. In fact, when 
hx = hy , there is a local function defined on the four nodes of size hk-l in 
Figure 6.2 such that 

DR(IkW, IkW) = 2DR(W, W). 

In addition, we have computed the minimal constant tUk satisfying 

(6.14) Ak(IkU, IkU) <?IkAkl(U, u) for all uEk_I' 
for the slit domain (see Example 9.1) and found that, for this example, Yk - 2 
as k -* oo. 

7. A FINITE ELEMENT EXAMPLE WITH LOOSELY COUPLED GRIDS 

In this section, we consider a finite element example using a sequence of 
loosely coupled grids. By loosely coupled, we mean that the triangulation on 
the kth grid is quasi-uniform of size hk . In general, the grids and their corre- 
sponding finite element subspaces are nonnested. Our results apply to the nat- 
ural finite element method applied to a problem with curved boundaries where 
a sequence of grids are generated which successively more closely approximate 
the boundary of the original domain. In general, (A.2) will not hold. We will 
show that (A.3) holds with appropriate a and Ca independent of the number 
of levels. Thus, the preconditioning results of Theorem 6 hold. 

Let Q be a domain in R2 with piecewise smooth boundary AQ. We con- 
sider the numerical approximation to the solution u of the problem 

Lu = f in Q, 
(7.1) u=O onaQ, 

where 
2 a _9v 

Lv=- 09 Ox.ai 
i,j=1 i ij 

with {aij (x) } smooth, symmetric, and uniformly positive definite. 
We assume that we have defined a sequence of grids { Tk } for k = 0, ... , j 

approximating Q such that the kth grid consists of triangles of quasi-uniform 
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size hk. In most applications, hk is roughly twice the size of hk+I, although 
for our theory we need only assume that there are positive constants co and cl 
not depending on k satisfying 

(7.2) cohk < hk+1 < clhk 

We define Xk to be the set of functions which are piecewise linear on Tk 
and vanish on the nodes of Tk on l . For good approximation, the boundary 
nodes of the triangulation Tk should lie on aQ . Note that we have not assumed 
that the nodes of the triangles of the kth grid are related in any way to the nodes 
of the triangles of the (k - 1 )st. 

For convenience of exposition, we shall only consider the case where every 
triangle of each Tk lies in Q. We consider the functions in 1k to be extended 
by zero to Q and thus can think of k as being contained in H1+f(Q) for 
,B < 1/2. The forms on 1k are defined by 

Ak(u, v) = A(u, v) for all u, v EJ4k 

where 
2 r vOiu 

A(v, w) E aj dx. 

The prolongation operators Ik are defined by the natural interpolation operator 
associated with the subspace 1k, i.e., 

Ikw(xi) = W(Xd) 

for nodes xi of Tk and functions w E Ik- _ . The discrete inner products are 
defined by 

(U, v)k = hk > U(Xi)V(Xi) 

where the sum is taken over all the nodes of Tk. 
The following proposition shows that (A.3) holds with appropriate a. Com- 

bining this result with Theorems 6 and 7 implies conditioning results for the 
variable 7 cycle and 2/ cycle multigrid algorithms. The variable % cycle 
results hold with m(j) = 1 while the 2 cycle results hold only assuming that 
m is sufficiently large. 

Proposition 7.1. Let k , Ak(., .), (,)k ) and Ik be defined as above. Fur- 
thermore, assume that (5.7) holds for the solution u of (7.1). Then (A.3) holds 
for a < min(,B/2, 1/4). 
Proof. Without loss of generality, we assume ft < 1/2. The argument given 
in [3] can be used to show that 

cOIIAk 3'2WIIk ? IIWIIHI<(Q < Cl II|A 4j/'WIk for all W E I. 

The proof proceeds as the proof of Proposition 6.1. By (6.6), it suffices to 
estimate the norm in Hl 4(Q) of (I-IkPk_ )w. Let Pk- denote the elliptic 
projection into Ak_ I defined by 

A(Pklv, q)= A(v,q) for all 0 E k_1 
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The triangle inequality gives 

11( - IkPk-1)WIIH fl(Q) 

(7.3) ? 11(I Pk -1)wIIH-fl(Q) + 1(I - Ik)Pk-1WIIHH-fl(Q) 

+ Il(pk-I 
- 

Pkl)WIIH1-fl(K). 

As in (6.9), the estimate 

(7.4) II(' - Ik)VIIHIf-(Q) k Chk IV IIHI?6(Q) 

holds for 0 < ,B < 1 and 0 < J < 1. Again, by (6.10), (7.4) holds for 3 = 0 
when v is in 1k- I. By (7.4) with 3 = fl = 0, Pk_I is a bounded operator 
with respect to the norm induced by the A(-, *) inner product. Hence, we have 
that 

11(1- Ik)pk 1WIIHi-#(Q) < ChkflIPk 1WIIHI(Q) < Chk lwIIHI(Q). 

The estimate corresponding to (6.7) is well known under the assumption (5.7). 
Thus, we are left to bound the third term of (7.3). 

As in the proof of Proposition 6.1, we use a duality argument. Replacing 
T' by L in (6.12)-(6.13) gives 

Il(Pk--k l)wIIWH-1(Q) 
< C sup A(Pk1 - 

where 4 is defined by 
L; = L(1 -fl),2+ in Q 

4 = 0 on OQ. 
But 

A((Pk_l Pk_l)w, O ) = A(w, (Ik-I))k_ ). 
In the appendix, we show that for /B < 1/2, 

(7-5) ~~~~IlPk 1VIIHI+fl(Q) < C||V|IHI+P(Q) 

and hence (7.4) implies 

A(w, (Ik- I)Tk-1C) < Chj II"IIH'A(Q) IWIIHI(Q) 

Combining the above estimates with (5.7) proves 

11 - IkPk-1)WIIH-fl(Q) ? Chk IIW IIH' (Q) 
This completes the proof of the proposition. a 

Remark 7.1. Slightly stronger results can be obtained with further assumptions 
on the relationships between grids. For example, one natural way of developing 
a sequence of grids is as follows. Each coarse grid triangle gives rise to four 
triangles in the finer grid connecting the midpoints of interior edges and the 
midpoint (with respect to arc-length) along the boundary curve for boundary 
edges (see Figure 7.1). In this case, under reasonable smoothness assumptions 
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T1 

FIGURE 7.1 
The mesh of Remark 7.1 

on the boundary, it is possible to prove by a perturbation argument that (A.6) 
holds with y = 1/4 [31]. Hence, Theorems 7 and 8, and Remark 4.3, provide 
results for the corresponding 7 and 2 cycle algorithms. 

8. A MIXED FINITE ELEMENT EXAMPLE 

In this section, we develop a multigrid technique for a mixed method finite 
element approximation of a second-order elliptic problem. We consider the so- 
called "Raviart-Thomas" elements on triangles and the analogous elements on 
rectangles [26]. In this example, assumption (A.2) will be satisfied. A similar 
treatment of the "Brezzi-Douglas-Marini" elements [10] may also be carried out. 

Let Q be a bounded domain in RN for N = 2 or N = 3. We consider the 
problem 

-V*(KVW)= f inQ, 
w = 0 on AQ. 

We assume that K = K(x) is smooth and bounded from below by some constant 
Ko > 0. 

The mixed approximation to (8.1) can be developed as follows. We define 
P = KVw and note that the pair (P, w) satisfies 

(8.2) (K IP, Q) + (w, V * Q) = 0 for all Q E H(div; Q), 
(V.P,v)=-(f,v) forallvE L (Q), 

where 
H(div; Q) ={4 E [L (Q)] such that V EL(Q)}. 

H(div; Q) is a Hilbert space [29] with norm given by 

(lIIllIL2(Q, + IjV .? ll22 ) /2. 

The pair (P, w) is approximated in mixed finite element subspace pairs dh ' Vh 

contained respectively in H(div; Q) and L 2(Q). Associated with these pairs 
is an integer r which is related to the approximation order. We assume that the 
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reader is familiar with the construction of these spaces as described in [26]. The 
mixed approximation is defined to be the pair (Ph ' Wh) E dh X Vh satisfying 

(8.3) (K 'Ph, Qh)+(Wh, VQh) = 0 forall Qh Edh 

(V Ph av) =-(f, v) for all v c V. 

Techniques for solving systems of the form (8.3) have been considered (e.g., 
[7, 15]). We believe the multigrid technique to be described is new. 

To describe our multigrid algorithm, we shall need some additional operator 
notation. Define the operators A: d&h F+ dlh' B: Vh F - dlh and B*: dlh F Vh 
by 

(Ap , q)= (K p, q) for all q E eh, 
(Bv, q)=(v,V.q) forallqe eh, 

(B*p, v) = (V p, v) for all v E Vh. 

Clearly, Ap is the L2 (Q) orthogonal projection of K_ lp onto eh, B*p is the 
L2(Q) orthogonal projection of V p onto VJ, and B is the adjoint of B* . 

With the above notation, (8.3) can be rewritten 

(B* O) ( ) (h-P f) 

where P denotes the L 2(Q) orthogonal projection onto Vh*. Thus,the solution 
Wh of (8.3) satisfies 

(8.4) B*A lBwh=P?f. 

We shall develop a multigrid algorithm for (8.4). In the remainder of this 
2 

section, we restrict ourselves to the case of R 
For the multigrid algorithm to be developed, we assume that the cost of evalu- 

ating A 1 applied to a vector in eh is not too expensive. This is true in the case 
of tensor product elements on a regular rectangular grid, where the evaluation 
of the action of A 1 involves banded solves (of bandwidth proportional to r ) 
along lines of constant y for the vx-component and along lines of constant x 
for the vy-component. The overall cost is thus proportional to the total number 
of unknowns. In the case of triangles, one might consider iterative evaluation 
of A 1, a well-conditioned system. To highlight the ideas, from here on, we 
limit our discussion to the case of tensor product elements on rectangles and 
assume that Q is the union of such rectangles. 

We develop a sequence of rectangular subgrids {Rk}, k = 0, ..., - 1, 
in the usual way. We start by a coarse partitioning of Q into rectangular 
elements. Each successively finer grid is defined by partitioning coarser grid 
rectangles into four equal size subrectangles. The mixed element approximation 
subspaces are defined with respect to the finest grid Rj_1 only, and we define 

h= V*. The space Ak5 for k < j is defined to be the set of continuous 
piecewise bilinear functions with respect to the kth grid which vanish on A0. 
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Note that 9. and 9._ 1 are defined with respect to the same grid. The spaces 

o c Z c .c l form a nested sequence of spaces, but 1_ c I only 
if r>0. 

We next define the multigrid forms. The form Ai is defined directly from 
the mixed method by 

Aj(6, X) = (B*A 'BO, X) for all 0, X E A.. 

The forms on the spaces Ak for k < j are defined by 

Ak(, x) =fcKVO Vxdx for all 0 xE . 

We assume that "discrete" inner products (' *)k are defined satisfying 

(8.5) C II6IIL2(Q) < (6 ')k < C 1106II2(Q) for all 0 E ek 

for k = 0, ...,j, with c, C independent of k. Note that, for k < j we can 

use (6.2) to define (" ,)k . In addition, (., .)j can be defined to be the L 2(Q) 
inner product. 

To complete the definition of the multigrid algorithm, we need only define 
the operators Ik, k = 1, ... , j. Except in the case r = 0, all spaces are 
nested, and hence Ik can be defined by the natural injection. For r = 0, only 
10-, is not contained in Af . In this case, we define Ij6 to be the function in 
.A' whose value on a grid rectangle is the mean value of O on that rectangle. 

For sufficiently smooth K, regularity results of the form (5.7) hold for the 
solution of (8.1) as discussed earlier. 

We now give the proposition which shows that the hypotheses (A.2) and (A.3) 
hold with the above operator definitions. Combining these results with the theo- 
rems of ??3 and 4 implies iterative convergence estimates for the corresponding 
multigrid-algorithms (with appropriate smoothers). 

Proposition 8.1. Let Ak, Ak(', *)J ('9 .)k and Ik be defined as above. Then 
(A.2) holds. Furthermore, if the solution u of (8.1) satisfies (5.7) for some 
fi E (1/2, 1], then (A.3) holds for a = ,B/2. 

Proof. We first show that (A.2) holds. Since the above setup corresponds to 
the usual finite element multigrid for k < j, the stronger result (2.5) holds for 
k 5$ j. Thus, we need only verify (A.2) for k = j. It is easy to see that for 

(8.6) A(6, 0)= sup (0 %)2 
XEth (KC %, ) 

If r > 0, then for 0 E<-l), 

(d, V * ) (K 1/2 V, K/%2X)2 ?A ( 6) 
Aj ( 6,6)=sup so < A I .1O v v s 
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For r = 0, since V x is constant on the rectangles of size hj 

(ij, -X)2 ( 7.X2 

AJ(IJ0, IJ0) = Sup ( V%)- = Sup 1 
Xe&h (K1x, x) XE'h (K X, X) 

(K 1 2V 0, K- 1/2 )2 

XEth (K x) 

Combining the above inequalities verifies (A.2). 
We next prove (A.3). Again, since for k < j, the above setup corresponds 

to the usual finite element multigrid, we need only consider k =j. Fix u E 4 
and define f E . to be the solution of 

(8.7) (f, 0) = Aj(u, 0) forall 0 e/j. 

Clearly, f is well defined. Moreover, u is the mixed approximation to the 
function W E Ho (Q) satisfying 

fKVW.Vq5dx=(f, O) forallqEeH'(Q). 

Note that Pi l u satisfies 

Aj_1(Pj1u, %)=(f,X) forallxE j1 

and hence P_- 1u is the standard (conforming) finite element approximation to 
W iny_I 

By the Schwarz inequality, 

Aj((I - IjPj_)u, u) < Aj((I - IjPj_1)u, (I - IjPj )u)"I Aj(u, u)1I . 

Consequently, (A.3) will follow if we can show 

(8.8) 2 2Aj((I - IjPj)U, (I - IjPj-l )) 

< Chj 2IA ull Aj(u, u) for all u e4 . 

Fix u E <. and let q E dh satisfy Aq + Bu = 0. Applying known error 
estimates for the mixed finite element method with fl > 1/2 [24] and the 
standard finite element method [1, 12] gives 

Aj((I-IP1 )u, (I-IjPj )u)1/2 = sup (u -P Iu, V X) 

(8.9) =) sup1/2 + sup _1 1X2 
X ErTh (K-1x,) XEreh (K xx)1 

< Ch | fWl H+f(Q) < Chj H 

The last inequality of (8.9) used (5.7). 
Clearly, by (8.5) and (8.7), 

Ilf IH-"+(Q) < C Ilf 1H-1(Q) lif 112(Q) < C|ft II' (Q)AJUl. 
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In addition, 

IIfIH-'(Q) SUfP 0 SUP A1, 0q) 
( OEHO'(Q) O ln EHO'(Q) 1011H (Q) 

< AJ(u u)1/2 sup Aj(P 0, P00) 
OEHo (Q) IIH(Q 

But the mixed element spaces satisfy V *h C Vh, and hence 

A (P , Poo) =sup (p=o, V. X) sup (+ X) 
XE@h (K1x, X) XE@h (K1x,x) 

= U ,0 x)2 < i2 
XEh (KX, X)() 

Combining the above results gives 

(8.10) lft-+() CAj (u, u) (I -f)/2 IA uillA 

Combining (8.9)-(8. 10) verifies (8.8). This completes the proof of the proposi- 
tion. 0 

9. NUMERICAL RESULTS 

We provide the results of a few numerical experiments to illustrate the the- 
ory developed in the earlier sections. We have made no attempt to provide 
numerical results for all of the examples. Instead, we provide examples only to 
illustrate the theorems in ??3 and 4. 

Example 9.1. We consider the Laplace equation on a slit domain. Specifically, 
we define Q to be the points interior to the unit square which are not on 
the line (1/2, y) for y E [1/2, 1), and we approximate the solution to (6.1). 
We define Ak to be the space Ak of piecewise bilinear functions on the kth 
rectangular grid as developed in ?6. The prolongation operator Ik corresponds 
to the linear interpolant I with respect to the triangular mesh defined in ?6. For 
this example, the form Ak corresponds to the Dirichlet form on the subspace, 
i.e., 

Ak(u,u)=D(u,u) foralluEA/k. 

In this application, (A.5) is satisfied, but (A.2) is not. 
Table 9.1 gives the condition number K for the system BjAj and the re- 

duction factor os (c5 = 6j in (3.2)) for the system I - BjAj as a function of 
the mesh size on the finest grid. We compare the 7' cycle (KV, 6V), the vari- 
able 7 cycle (KV, ) and the > cycle (K., 5 ,) multigrid algorithm. We 
use Richardson smoothing, and hence (A.4) is satisfied. The variable 7 cycle 
used twice the number of smoothings on each consecutively coarser grid (i.e., 
Bo = , = 2) and one smoothing on the finest grid. The % and 7 cycle 



30 J. H. BRAMBLE, J. E. PASCIAK, AND JINCHAO XU 

TABLE 9.1 
Convergence results for Example 9.1 

/ 21 (.vv5) Kw (4w ) .Kv ( 45) 
1/8 2.1 (.45) 2.1 (.45) 2.1 (.45) 
1/16 2.2 (.45) 2.2 (.45) 2.4 (.50) 
1/32 2.2 (.46) 2.2 (.46) 2.7 (.54) 
1/64 2.2 (.46) 2.2 (.46) 3.0 (.57) 
1/128 2.2 (.46) 2.2 (.46) 3.2 (.59) 

algorithms used m(k) = m = 1. For all of the runs, the coarse grid corre- 
sponded to a mesh of size 1/4 and the coarse grid problems were essentially 
solved by applying 40 smoothing steps. Note that for this example, the com- 
putational results for the variable % and the 2 cycle multigrid algorithms 
are essentially identical. This is reasonable since both algorithms have exactly 
the same number of total smoothings on each grid in the multi-level iteration. 
This example satisfies the hypotheses of Theorems 6 and 7, and the observed 
behavior of the variable 7 and 2 cycle algorithms agree with the theory. 
However, the behavior of the Y cycle algorithm is perhaps better than one 
would expect from the theory of ??3 and 4. 

Example 9.2. This example illustrates what can happen to the multigrid algo- 
rithms when the minimal constant Pk satisfying (6.14) is greater than 2. We 
consider the same setup as in Example 9.1 except that we define Ak by 

(9.1) A k(U I U) = kD(u, u) for all u e .4k, 

where T. = 1 and for k < j, 

j-1 

Tk =1 (I +6hi). 
i=k 

A result of this scaling is that (A.5) no longer holds. Clearly, Tk = 1 + 0(hk) 
and it is not difficult to show that (A.3) still holds. 

Even though the scaling introduced in (9.1) is purely artificial, it is not un- 
reasonable to expect similar differences in forms in actual applications. Such 
differences might be observed if the operator involved had variable coefficients 
and the forms on the individual grids were computed by numerical integration. 

Table 9.2 gives computational results for this example. The condition number 
for the variable % cycle algorithm (Kt,,) and the Y cycle (K,,) algorithm as 
a function of h is reported. In addition, the largest (qwf) and smallest (qu') 
eigenvalue of the operator BjAJ is given in the case of the 7 cycle algorithm 
with m = 1. Finally, the minimum value of k satisfying (6.14) is also given. 
Note that for these computations, the 2 cycle algorithm leads to an indefinite 
operator B1 for more than two levels. Thus, the extra smoothing requirement 
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TABLE 9.2 
Convergence results for Example 9.2 

hj ~~~Kvv Kv qo (q11) Pk 

1/8 3.8 3.8 .57 (2.2) 3.7 
1/16 5.2 6.1 -.4 (1.6) 3.2 
1/32 5.7 8.5 -1.2 (1.4) 2.7 
1/64 5.2 10.6 -4.4 (1.3) 2.4 

1/128 4.6 12.5 -30 (1.2) 2.2 

in Theorem 7 is needed to produce a stable > cycle multigrid algorithm. In 
contrast, the hypotheses for Theorem 6 are satisfied and the computational 
results for the variable 2 cycle algorithm illustrate the uniform conditioning 
of the BjAj guaranteed by the theory. As in Example 9. 1, the behavior of the 
Y cycle seems better than that predicted by the theory. The Y cycle does 
show more deterioration in the condition number compared to Example 9.1, 
but nevertheless would lead to a reasonable preconditioned strategy for solving 
(2.1). 

Remark 9.1. Although not reported, the largest eigenvalues of BjAj for vari- 
able Y and X cycle computations in Table 9.2 were always greater than 2. 
Accordingly, I - BjAj is not a reducer. Obviously, there exists a constant y < 1 
so that I - yBjAj is a reducer with a good reduction rate. An iterative algorithm 
with reduction matrix I - yBjAj can be trivially constructed and is, equiva- 
lently, a linear preconditioned iteration for the computation of the action of 
AJ I applied to a function in A . Note that for the 7 cycle algorithm with 
one smoothing and more than two levels, there does not exist a constant y so 
that I - yBjAj is a reducer. For a stable iterative technique utilizing the 7/'> 

cycle algorithm, one would have to increase m. 

10. APPENDIX 

We give a proof of (6.10) and (7.5) in this section. We will prove the results 
for piecewise linear functions on triangles. The proof for bilinear functions is 
similar. Let m be a nonnegative integer. Assume that we are given a quasi- 
uniform triangulation {U Ti} of size h on Q and consider the space Sh of 
discontinuous piecewise polynomials up to degree m on this triangulation. We 
will prove that the inverse inequality 

(10.1) IIVIIH'E(Q) < Ch' IVIIL2(,) for all v E Sh 

holds for a < 1/2. 
Assuming that (10. 1) holds, we can prove (6. 10) and (7.5) as follows. Clearly, 

(10.2) 1IV1II+`() ?< C (1V11H M, + ax ) 
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Inequality (6.10) follows applying (10.1) to I . To prove (7.5), we let the 
above triangulation correspond to the triangulation defining -k 1 and let 7t 

denote the L 2(Q) orthogonal projection operator onto k1 . Obviously, it 
suffices to prove that 

llPk-1U - UHHI+n(Q) < C11U11HI+f(Q). 

Clearly, 

||PklU - U|HI+n(Q) 

2 a~~~~~~~u au a 
(I-n~~y + 7r~ - ~(Pklu) 

(i IHA(Q) 1Xi AXE Hf(Q)J 

By (I10.1) and approximation properties, 

au 0 - Of u 0 
7r 

- (Pk-IU)A < Chk 1ja 
- 

oX (Pk_IU) 2 

< C11U11H1+fl(Q) 

Inequality (7.5) then follows from the fact that r is a bounded operator on 
H" (Q) . 

We provide a proof of (10.1) in the remainder of this section. To do this, 
we use the real method of interpolation of Lions and Peetre (see [11]) which 
asserts that we may take 

2UH(Q = jK(U, t)2 t-2- dt, 

where 
K(u, t)2 = inf (|U -V1122 + t21IVIIH(Q)). 

VEH' (Q) 
LH 

In fact, a direct computation shows that the norm above is equal to a constant 
(depending on /B ) multiple of the Hilbert scale norm. Taking v = 0 in the 
definition of K(u, t)2 gives 

(10.3) j K(u, t) tfBfl dt < (23)-'h24 I1UL2(Q2). 

Thus, we are left to estimate the integral from 0 to h. 
For t < h, we define v (depending on t) as follows. Let Xi be a smooth 

function defined on the ith triangle Ti of the triangulation defining Sh satis- 
fying 

i 0 if x is not in T. 

1 if x is in Ti and the distance from x to 0Ti is > t. 

In addition, assume that Xi satisfies 

x/(X) < CtF for allxe E. 
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We then define v E H1 (Q) by 

V = EoI u. 
ti 

By the quasi-uniformity of the triangulation and the smoothness of Xi, 

(1) IIU _ VIIL2() < Cht IIUIIlOO() and 

(2) liv IIH'(T) < C(IIUIIHI(T ) + ht IIUIIL?(T,)) 
We clearly have 

IIUIIL2o( ) < ch -2 22I(I 

and 

IIUI HI(T ) <Lc |||L(T 

Consequently, 
K(u, t)2 < cth-1 IIUIIL2(Q). 

It follows that 

(10.4) ( K(U,0) copldt < Ch proof oLf(Q)t) 

Combining ( 10.3) and ( 10.4) completes the proof of ( 10.1). 
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